Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems

نویسندگان

  • Alexandre Ern
  • Iain Smears
  • Martin Vohralík
چکیده

We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily highorder discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)norm of the error and the temporal jumps of the numerical solution. The estimators provide guaranteed upper bounds for this norm, without unknown constants. Furthermore, the efficiency of the estimators with respect to this norm is local in both space and time, with constants that are robust with respect to the mesh-size, time-step size, and the spatial and temporal polynomial degrees. We further show that this norm, which is key for local space-time efficiency, is globally equivalent to the L(H) ∩ H1(H−1)-norm of the error, with polynomial-degree robust constants. The proposed estimators also have the practical advantage of allowing for very general refinement and coarsening between the timesteps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations

We present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by the mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with ...

متن کامل

Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems

In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...

متن کامل

A Posteriori Error Estimates for Nonlinear Problems. L(0, T ;L(Ω))-Error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [10] we analyze a residual a posteriori error estimator for space-time finite element discretizations of parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-...

متن کامل

Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems

It is known that the energy technique for a posteriori error analysis of finite element discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques with an appropriate pointwise representation of the error based on an elliptic reconstruction operator which restores the optimal order (and regularity for piecewise polynomi...

متن کامل

A posteriori error estimates for linear parabolic equations

We consider discretizations of linear parabolic equations by A-stable θ-schemes in time and conforming finite elements in space. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. The error estimates are fully robust in the sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2017